| USN | 2 |  |  |  |  |
|-----|---|--|--|--|--|
|-----|---|--|--|--|--|

## Seventh Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Optical Fiber Communication**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

## PART - A

| 1 | a. | Derive the expression for Numerical Aparture using ray theory.           | (07 Marks) |
|---|----|--------------------------------------------------------------------------|------------|
|   |    | In brief discuss the different design approaches for single-mode fibers. | (07 Marks) |

- c. A graded index fiber has a core with a parabolic-index profile which has a diameter of 50 μm. The fiber has a numerical aperture of 0.2. Estimate the total number of guided modes propagating in the fiber when it is operating at a wavelength of 1 µm. (06 Marks)
- In brief explain linear scattering losses. 2 (07 Marks)
  - Derive the expression for rms-pulse broadening due to intermodal dispersion in a step index
  - A multimode graded index fiber exhibits total pulse broadening of 0.1 µ.s over a distance of 15 km. Estimate the following:
    - Maximum possible bandwidth on the link assuming no ISI. (i)
    - (ii) Pulse dispersion per km.
    - (iii) BW-length product for the fiber.

(05 Marks)

- a. Explain the GaAIAs double-heterojunction LED structure. (07 Marks)
  - b. Explain the structure of RAPD and its working.

(08 Marks)

- c. A double-heterojunction structure in GaAsP LED emitting a peak wavelength of 1310 nm has a radiative and non radiative recombination times of 30 ns and 100 ns respectively. The drive current is 40 mA. Estimate the
  - Bulk recombination life time.
- (ii) Internal power level.

(05 Marks)

- Explain lensing schemes for coupling improvement.
- (07 Marks)
- b. List out the requirements that a good connector design has to meet.
- (07 Marks)
- c. A GaAs optical source with refractive index of 3.6 is coupled to a silica fiber that has a refractive index of 1.48. If the fiber ends face and source are in close physical contact. Estimate Fresnel reflection at the interface and power loss in dB. (06 Marks)

## PART - B

- In brief explain basic structure of an optical receiver. (08 Marks)
  - Discuss the features of Eye-pattern.
  - Write short note on "Burst-mode receiver". C.

(07 Marks) (05 Marks)

Derive the expression for rise-time budget analysis. 6

(08 Marks)

In brief explain multi channel AM technique. Write a short note on "Microwave photonics".

- (97 Marks) (05 Marks)
- Explain in brief design and operation of polarization independent isolator. (08 Marks)
  - Explain in brief operational principle and implementation of WDM with diagram. (07 Marks) c. Write a short note on "MEMS technology".
- Explain three possible configurations of a EDFA.

(05 Marks)

Explain the SONET/SDH frame format.

(08 Marks) (07 Marks)

Write a short note on "Semiconductor Optical Amplifiers"

(05 Marks)